Tag Archives: Technology

Unleashing the Transformative Potential of Augmented Reality in Robotics

AR in Robotics

The integration of augmented reality (AR) and robotics has brought about countless benefits and transformed many industries. This integration of AR in robotics has proven to be a game-changer since the technology is becoming increasingly prevalent in various sectors. For instance, robots can now recognize objects in a 3D environment, allowing them to manipulate objects more effectively than ever before. This means that robots can perform tasks that would have been impossible for them to do previously.

In this blog post, we will explore the powerful impact of augmented reality in robotics and how it has become the forefront of innovation. We will dive into the effects of augmented reality technology on the robotics industry, including new developments, and increased efficiency.

Increased Efficiency

Using AR, robots can identify, locate and sort objects quickly and accurately, resulting in an improvement in performance and overall productivity. For instance, AR technology used in manufacturing has enabled robots to minimize errors in assembly lines. The robots can recognize a product and its details and perform assigning tasks with precision and accuracy. This minimizes errors, and the time spent on the task and thus increasing overall productivity outcomes. Below are some examples of how AR is further shaping the field of robotics:

Augmented Reality

Robot Programming:

AR can simplify the programming of robots by overlaying intuitive graphical interfaces onto the robot’s workspace. This allows operators to teach robots tasks by physically demonstrating them, reducing the need for complex coding and making it accessible to non-programmers.

Maintenance and Troubleshooting:

When robots require maintenance or encounter issues, technicians can use AR to access digital manuals, schematics, and step-by-step repair guides overlaid on the physical robot. This speeds up troubleshooting and maintenance, reducing downtime.

Training and Simulation:

AR-based training simulators provide a safe and cost-effective way to train robot operators. Trainees can interact with virtual robots and practice tasks in a simulated environment, which helps them become proficient in operating and maintaining actual robots more quickly.

Remote Operation and Monitoring:

AR allows operators to remotely control and monitor robots from a distance. This is particularly useful in scenarios where robots are deployed in hazardous or inaccessible environments, such as deep-sea exploration or space missions.

Augmented Reality

Quality Control and Inspection:

Robots equipped with AR technology can perform high-precision inspections and quality control tasks. AR overlays real-time data and images onto the robot’s vision, helping it identify defects, measure tolerances, and make real-time adjustments to improve product quality.

Inventory Management:

In warehouses and manufacturing facilities, AR-equipped robots can efficiently manage inventory. They use AR to recognize and locate items, helping in the organization, picking, and restocking of products.

Teleoperation for Complex Tasks:

For tasks that require human judgment and dexterity, AR can assist teleoperators in controlling robots remotely. The operator can see through the robot’s cameras, receive additional information, and manipulate objects in the robot’s environment, such as defusing bombs or performing delicate surgical procedures.

Robotics Research and Development:

Researchers and engineers working on robotics projects can use AR to visualize 3D models, simulations, and data overlays during the design and development phases. This aids in testing and refining robotic algorithms and mechanics.

Robot Fleet Management:

Augmented Reality

Companies with fleets of robots can employ AR to monitor and manage the entire fleet efficiently. Real-time data and performance metrics can be displayed through AR interfaces, helping organizations optimize robot usage and maintenance schedules.

Top Companies that Utilize Augmented Reality in Robotics

AR technology is widely adopted by companies worldwide to boost sales in their robotics systems. Notable players in this arena include Northrop Grumman, General Motors, and Ford Motor Company. Within the automotive industry, reliance on robotic systems is significant, and the integration of AR technology has yielded enhanced efficiency and reduced operating costs. Moreover, experts anticipate that AR technology could slash training time by up to 50% while boosting productivity by 30%.

These are a few instances of companies that employ augmented reality (AR) in the field of robotics:

  • iRobot: iRobot, the maker of the popular Roomba vacuum cleaner robots, has incorporated AR into its mobile app. Users can use the app to visualize cleaning maps and see where their Roomba has cleaned, providing a more informative and interactive cleaning experience.
  • Universal Robots: Universal Robots, a leading manufacturer of collaborative robots (cobots), offers an AR interface that allows users to program and control their robots easily. The interface simplifies the setup process and enables users to teach the robot by simply moving it through the desired motions.
  • Vuforia (PTC): PTC’s Vuforia platform is used in various industries, including robotics. Companies like PTC provide AR tools and solutions to create interactive maintenance guides, remote support, and training applications for robotic systems.
  • KUKA: KUKA, a global supplier of industrial robots, offers the KUKA SmartPAD, which incorporates AR features. The SmartPAD provides a user-friendly interface for controlling and programming KUKA robots, making it easier for operators to work with the robots.
  • RealWear: RealWear produces AR-enabled wearable devices, such as the HMT-1 and HMT-1Z1, which are designed for hands-free industrial use. These devices are used in robotics applications for remote support, maintenance, and inspections.
  • Ubimax: Ubimax offers AR solutions for enterprise applications, including those in robotics. Their solutions provide hands-free access to critical information, making it easier for technicians to perform maintenance and repairs on robotic systems.
  • Vicarious Surgical: Vicarious Surgical is developing a surgical robot that incorporates AR technology. Surgeons wear AR headsets during procedures, allowing them to see inside the patient’s body in real-time through the robot’s camera and control the robot’s movements with precision.

Collaborative Robotics

Collaborative robots, also known as cobots, are rapidly gaining traction across various industries. By leveraging augmented reality (AR), human workers can effortlessly command and interact with cobots, leading to improved tracking and precision. This collaborative synergy brings forth a multitude of advantages, such as error identification and prompt issue resolution. Consequently, this approach streamlines and optimizes manufacturing processes, ushering in enhanced efficiency and productivity.

Examples of Augmented Reality (AR) in Collaborative Robotics

Assembly and Manufacturing Assistance:

AR can provide assembly line workers with real-time guidance and visual cues when working alongside cobots. Workers wearing AR glasses can see overlays of where components should be placed, reducing errors and increasing assembly speed.

Quality Control:

In manufacturing, AR can be used to display quality control criteria and inspection instructions directly on a worker’s AR device. Cobots can assist by presenting parts for inspection, and any defects can be highlighted in real-time, improving product quality.

Collaborative Maintenance:

During maintenance or repair tasks, AR can provide technicians with visual instructions and information about the robot’s components. Cobots can assist in holding or positioning parts while the technician follows AR-guided maintenance procedures.

Training and Skill Transfer:

AR can facilitate the training of workers in cobot operation and programming. Trainees can learn how to interact with and program cobots through interactive AR simulations and tutorials, reducing the learning curve.

Safety Enhancements:

AR can display safety information and warnings to both human workers and cobots. For example, it can highlight no-go zones for the cobot, ensuring that it avoids contact with workers, or provide real-time feedback on human-robot proximity.

Collaborative Inspection:

In industries like aerospace or automotive manufacturing, workers can use AR to inspect large components such as aircraft wings or car bodies. AR overlays can guide cobots in holding inspection tools or cameras in the correct positions for thorough examinations.

Material Handling:

AR can optimize material handling processes by showing workers and cobots the most efficient paths for transporting materials. It can also provide real-time information about inventory levels and restocking requirements.

Dynamic Task Assignment:

AR systems can dynamically assign tasks to human workers and cobots based on real-time factors like workload, proximity, and skill levels. This ensures efficient task allocation and minimizes downtime.

Collaborative Training Environments:

AR can create shared training environments where human workers and cobots can practice collaborative tasks safely. This fosters better teamwork and communication between humans and robots.

Multi-robot Collaboration:

AR can help orchestrate the collaboration of multiple cobots and human workers in complex tasks. It can provide a centralized interface for monitoring, controlling, and coordinating the actions of multiple robots.

Data Visualization

AR can display real-time data and analytics related to cobot performance, production rates, and quality metrics, allowing workers to make informed decisions and adjustments. These are just some of the ways that AR can be used to optimize collaborative robotics applications. By taking advantage of AR-enabled solutions, companies can improve efficiency in their operations and reduce downtime. With its ability to facilitate human-robot collaboration and enhance safety protocols, AR is an invaluable tool for unlocking the potential of cobots in industrial use cases.

Augmented reality (AR) technology is the cornerstone of robotics development. It seamlessly brings together various elements, resulting in an enhanced human-robot interaction. By integrating AR into robotics, efficiency is increased, and errors are eliminated. Successful examples of AR integration in robotic systems serve as proof of the substantial benefits it brings to diverse industries, including manufacturing, healthcare, automotive, and entertainment. The challenge for businesses now lies in identifying the significant opportunities that this technology offers and harnessing them for optimal benefits.

How Chatbots Make Healthcare More Efficient

In the mid 1960s, Joseph Weizenbaum of the MIT Artificial Intelligence Laboratory created ELIZA, an early natural language processing computer program and the first chatbot therapist. While ELIZA did not change therapy forever, it was a major step forward and one of the first programs capable of taking the Turing Test. Researchers were surprised by the amount of people who attributed human-like feelings to the computer’s responses.

Fast-forward 50 years later, advancements in artificial intelligence and natural language processing enable chatbots to become useful in a number of scenarios. Interest in chatbots has increased by 500% in the past 10 years and the market size is expected reach $1.3 billion by 2025.

Chatbots are becoming commonplace in marketing, customer service, real estate, finance, and more. Healthcare is one of the top 5 industries where chatbots are expected to make an impact. This week, we explore why chatbots appeal to help healthcare providers run a more efficient operation.

SCALABILITY

Chatbots can interact with a large number of users instantly. Their scalability equips them to handle logistical problems with ease. For example, chatbots can make mundane tasks such as scheduling easier by asking basic questions to understand a user’s health issues, matching them with doctors based on available time slots, and integrating with both doctor and patient calendars to create an appointment.

At the onset of the pandemic, Intermountain Healthcare was receiving an overload of inquiries from people who were afraid they may have contracted Covid-19. In order to facilitate the inquiries, Intermountain added extra staff and a dedicated line to their call center, but it wasn’t enough. Ultimately, they turned to artificial intelligence in the form of Scout, a conversational chatbot made by Gyant, to facilitate a basic coronavirus screening which determined if patients were eligible to get tested at a time when the number of tests were limited.

Ultimately, Scout only had to ask very basic questions—but it handled the bevy of inquiries with ease. Chatbots have proved themselves to be particularly useful for understaffed healthcare providers. As they employ AI to learn from previous interactions, they will become more sophisticated which will enable them to take on more robust tasks.

ACCESS

Visiting a doctor can be challenging due to the considerable amount of time it takes to commute. Working people and those without access to reliable transport may prevent them from taking on the hassle of the trip. Chatbots and telehealth in general provide a straightforward solution to these issues, enabling patients to receive insight as to whether an in-person consultation will be necessary.

While chatbots cannot provide medical insight and prognoses, they are effective in collecting and encouraging an awareness of basic data, such as anxiety and weight changes. They can help effectively triage patients through preliminary stages using automated queries and store information which doctors can later reference with ease. Their ability to proliferate information and handle questions will only increase as natural language processing improves.

A PERSONALIZED APPROACH — TO AN EXTENT

Chatbot therapists have come a long way since ELIZA. Developments in NLP, machine learning, and more enable chatbots to deliver helpful, personalized responses to user messages. Chatbots like Woebot are trained to employ cognitive-behavioral therapy (CBT) to aid patients suffering from emotional distress by offering prompts and exercises for reflection. The anonymity of chatbots can help encourage patients to provide more candid answers unafraid of human judgment.

However, chatbots have yet to achieve one of the most important features a medical provider should have: empathy. Each individual is different, some may be scared away by formal talk and prefer casual conversation while for others, formality may be of the utmost importance. Given the delicacy of health matters, a lack of human sensitivity is a major flaw.

While chatbots can help manage a number of logistical tasks to make life easier for patients and providers, their application will be limited until they can gauge people’s tone and understand context. If recent advances in NLP and AI serve any indication, that time is soon to come.

How Bluetooth Became the Gold Standard of Wireless Audio Technology

Bluetooth technology has established itself over the years as the premiere wireless audio technology and a staple of every smartphone user’s daily mobile experience. From wireless headphones, to speakers, to keyboards, gaming controllers, IoT devices, and instant hotspots—Bluetooth is used for a growing variety of functions every year.

While Bluetooth is now a household name, the path to popularity was built over the course of over 20 years.

CONCEPTION

In 1994, Dr. Jaap Haartsen—an electrical engineer working for Ericsson’s Mobile Terminal Division in Lund—was tasked with creating an indoor wireless communication system for short-range radio connections. He ultimately created the Bluetooth protocol. Named after the renowned Viking king who united Denmark and Norway in 958 AD, the Bluetooth protocol was designed to replace RS-232 telecommunication cables using short range UHF radio waves between 2.4 and 2.485 GHz.

In 1998, he helped create the Bluetooth Special Interest Group, driving the standardization of the Bluetooth radio interface and obtaining worldwide regulatory approval for Bluetooth technology. To this day, Bluetooth SIG publishes and promotes the Bluetooth standard as well as revisions.

BLUETOOTH REACHES CONSUMERS

In 1999, Ericsson introduced the first major Bluetooth product for consumers in the form of a hands-free mobile headset. The headset won the “Best of Show Technology” award at COMDEX and was equipped with Bluetooth 1.0.

Each iteration of Bluetooth has three main distinguishing factors:

  • Range
  • Data speed
  • Power consumption

The strength of these factors is determined by both the modulation scheme and data packet employed. As you might imagine, Bluetooth 1.0 was far slower than the Bluetooth we’ve become accustomed to in 2021. Data speeds capped at 1Mbps with a range up to 10 meters. While we use Bluetooth to listen to audio on a regular basis today, it was hardly equipped to handle music and primarily designed for wireless voice calls.

THE BLUETOOTH EVOLUTION

The Bluetooth we currently enjoy in 2021 is version 5. Over the years, Bluetooth’s range, data speed, and power consumption have increased dramatically.

In 2004, Bluetooth 2.0 focused on enhancing the data rate, pushing from 0.7Mbps in version 1 to 1-3Mbps while increasing range from 10m to 30m. Bluetooth 3.0 increased speeds in 2009, allowing up to 24Mbps.

In 2011, Bluetooth 4.0 introduced a major innovation in BLE (Bluetooth Low Energy). BLE is an alternate Bluetooth segment designed for very low power operation. It enables major flexibility to build products that meet the unique connectivity requirements of their market. BLE is tailored toward burst-like communications, remaining in sleep mode before and after the connection initiates. The decreased power consumption takes IoT devices like industrial monitoring sensors, blood pressure monitoring, and Fitbit devices to the next level. These devices can employ BLE to run at 1Mbps at very low power consumption rates. In addition to lowering the power consumption, Bluetooth 4.0 doubles the typical maximum range from 30m in Bluetooth 3.0 to 60m.

BLUETOOTH 5

Bluetooth 5 is the latest version of the technology. Bluetooth 5 doubles the bandwidth by doubling the speed of transmission. In addition, it quadruples the typical max range, bringing it up to 240m. Bluetooth 5 also introduces Bluetooth Low Energy audio, which enables one device to share audio with multiple other devices.

CONCLUSION

Bluetooth is a game-changing technology which stands to revolutionize more than just audio. IoT devices, health tech, and more stand to improve as the Bluetooth SIG continues to upgrade the protocol. After thirty years of improvement, the possibilities remain vast for savvy developers to take advantage of the latest Bluetooth protocols to build futuristic wireless technologies.

HL7 Protocol Enhances Medical Data Transmissions–But Is It Secure?

In our last blog, we examined how DICOM became the standard format for transmitting files in medical imaging technology. As software developers, we frequently find ourselves working in the medical technology field navigating new formats and devices which require specialized attention.

This week, we will jump into one of the standards all medical technology developers should understand: the HL7 protocol.

The HL7 protocol is a set of international standards for the transfer of clinical and administrative data between hospital information systems. It refers to a number of flexible standards, guidelines, and methodologies by which various healthcare systems communicate with each other. HL7 connects a family of technologies, providing a universal framework for the interoperability of healthcare data and software.

Founded in 1987, Health Level Seven International (HL7) is a non-profit, ANSI-accredited standards developing organization that manages updates of the HL7 protocol. With over 1,600 members from over 50 countries, HL7 International represents brain trust incorporating the expertise of healthcare providers, government stakeholders, payers, pharmaceutical companies, vendors/suppliers, and consulting firms.

HL7 has primary and secondary standards. The primary standards are the most popular and integral for system integrations, interoperability, and compliance. Primary standards include the following:

  • Version 2.x Messaging Standard–an interoperability specification for health and medical transactions
  • Version 3 Messaging Standard–an interoperability specification for health and medical transactions
  • Clinical Document Architecture (CDA)–an exchange model for clinical documents, based on HL7 Version 3
  • Continuity of Care Document (CCD)–a US specification for the exchange of medical summaries, based on CDA.
  • Structured Product Labeling (SPL)–the published information that accompanies a medicine based on HL7 Version 3
  • Clinical Context Object Workgroup (CCOW)–an interoperability specification for the visual integration of user applications

While HL7 may enjoy employment worldwide, it’s also the subject of controversy due to underlying security issues. Researchers from the University of California conducted an experiment to simulate an HL7 cyber attack in 2019, which revealed a number of encryption and authentication vulnerabilities. By simulating a main-in-the-middle (MITM) attack, the experiment proved a bad actor could potentially modify medical lab results, which may result in any number of catastrophic medical miscues—from misdiagnosis to prescription of ineffective medications and more.

As software developers, we advise employing advanced security technology to protect patient data. Medical professionals are urged to consider the following additional safety protocols:

  • A strictly enforced password policy with multi-factor authentication
  • Third-party applications which offer encrypted and authenticated messaging
  • Network segmentation, virtual LAN, and firewall controls

While HL7 provides unparalleled interoperability for health care data, it does not provide ample security given the level of sensitivity of medical data—transmissions are unauthenticated and unvalidated and subject to security vulnerabilities. Additional security measures can help medical providers retain that interoperability across systems while protecting themselves and their patients from having their data exploited.

LiDAR: The Next Revolutionary Technology and What You Need to Know

In an era of rapid technological growth, certain technologies, such as artificial intelligence and the internet of things, have received mass adoption and become household names. One up-and-coming technology that has the potential to reach that level of adoption is LiDAR.

WHAT IS LIDAR?

LiDAR, or light detection and ranging, is a popular remote sensing method for measuring the exact distance of an object on the earth’s surface. Initially used in the 1960s, LiDAR has gradually received increasing adoption, particularly after the creation of GPS in the 1980s. It became a common technology for deriving precise geospatial measurements.

LiDAR requires three components: the scanner, laser, and GPS receiver. The scanner sends a pulsed laser to the GPS receiver to calculate an object’s variable distances from the earth surface. The laser emits light which travels to the ground and reflects off things like buildings, tree branches and more. The reflected light energy then returns to the LiDAR sensor where the associated information is recorded. In combination with photodetector and optics, it allows for an ultra-precise distance detection and topographical data.

WHY IS LIDAR IMPORTANT?

As we covered in our rundown of the iPhone 12, new iOS devices come equipped with a brand new LiDAR scanner. LiDAR now enters the hands of consumers who have Apple’s new generation of devices, enabling enhanced functionality and major opportunities for app developers. The proliferation of LiDAR signals toward the technology finding mass adoption and household name status.

There are two different types of LiDAR systems: Terrestrial and Airborne. Airborne LiDAR are installed on drones or helicopters for deriving an exact measurement of distance, while Terrestrial LiDAR systems are installed on moving vehicles to collect pinpoints. Terrestrial LiDAR systems are often used to monitor highways and have been employed by autonomous cars for years, while airborne LiDAR are commonly used in environmental applications and gathering topographical data.

With the future in mind, here are the top LiDAR trends to look out for moving forward:

SUPERCHARGING APPLE DEVICES

LiDAR enhances the camera on Apple devices significantly. Auto-focus is quicker and more effective on those devices. Moreover, it supercharges AR applications by greatly enhancing the speed and quality of a camera’s ability to track the location of people as well as place objects.

One of the major apps that received a functionality boost from LiDAR is Apple’s free Measure app, which can measure distance, dimensions, and even whether an object is level. The measurements determined by the app are significantly more accurate with the new LiDAR scanner, capable of replacing physical rulers, tape measures, and spirit levels.

Microsoft’s Seeing AI application is designed for the visually impaired to navigate their environment, however, LiDAR takes it to the next level. In conjunction with artificial intelligence, LiDAR enables the application to read text, identify products and colors, and describe people, scenes, and objects that appear in the viewfinder.

BIG INVESTMENTS BY AUTOMOTIVE COMPANIES

LiDAR plays a major role in autonomous vehicles, relying on a terrestrial LiDAR system to help them self-navigate. In 2018, reports suggest that the automotive segment acquired a business share of 90 percent. With self-driving cars inching toward mass adoption, expect to see major investments in LiDAR by automotive companies in 2021 and beyond.

As automotive companies look to make major investments in LiDAR, including Volkswagen’s recent investment in Aeva, many LiDAR companies are competing to create the go-to LiDAR system for automotive companies. Check out this great article by Wired detailing the potential for this bubble to burst.

LIDAR DRIVING ENVIRONMENTAL APPLICATIONS

Beyond commercial applications and the automotive industry, LiDAR is gradually seeing increased adoption for geoscience applications. The environmental segment of the LiDAR market is anticipated to grow at a CAGR of 32% through 2025. LiDAR is vital to geoscience applications for creating accurate and high-quality 3D data to study ecosystems of various wildlife species.

One of the main environmental uses of LiDAR is for soliciting topographic information on landscapes. Topographic LiDAR is expected to see a growth rate of over 25% over the coming years. These systems can see through forest canopy to produce accurate 3D models of landscapes necessary to create contours, digital terrain models, digital surface models and more.

CONCLUSION

In March 2020, after the first LiDAR scanner became available in the iPad Pro, The Verge put it perfectly when they said that the new LiDAR sensor is an AR hardware solution in search of software. While LiDAR has gradually found increasing usage, it is still a powerful new technology with burgeoning commercial usage. Enterprising app developers are looking for new ways to use it to empower consumers and businesses alike.

For supplementary viewing on the inner workings of the technology, check out this great introduction below, courtesy of Neon Science.

How to Leverage AR to Boost Sales and Enhance the Retail Experience

The global market for VR and AR in retail will reach $1.6 billion by 2025 according to research conducted by Goldman Sachs. Even after years of growing popularity, effectively employed Augmented Reality experiences feel to the end-user about as explicitly futuristic as any experience created by popular technology.

We have covered the many applications for AR as an indoor positioning mechanism on the Mystic MediaTM blog, but when it comes to retail, applications for AR are providing real revenue boosts and increased conversion rates.

Augmented Reality (AR) History

Ivan Sutherland 1

While working as an associate professor at Harvard University, computer scientist Ivan Sutherland, aka the “Father of Computer Graphics”, created an AR head-mounted display system which constituted the first AR technology in 1968. In the proceeding decades, AR visual displays gained traction in universities, companies, and national agencies as a way to superimpose vital information on physical environments, showing great promise for applications for aviation, military, and industrial purposes.

Fast forward to 2016, the sensational launch of Pokemon GO changed the game for AR. Within one month, Pokemon GO reached 45 million users, showing there is mainstream demand for original and compelling AR experiences.

Cross-Promotions

Several big brands took advantage of Pokemon GO’s success through cross-promotions. McDonald’s paid for Niantic to turn 3,000 Japan locations into gyms and PokeStops, a partnership that has recently ended. Starbucks took advantage of Pokemon GO’s success as well by enabling certain locations to function as PokeStops and gyms, and offering a special Pokemon GO Frappucino.

One of the ways retailers can enter into the AR game without investing heavily in technology is to cross-promote with an existing application.

In 2018, Walmart launched a partnership with Jurassic World’s AR game: Jurassic World Alive. The game is similar to Pokemon GO, using a newly accessible Google Maps API to let players search for virtual dinosaurs and items on a map, as well as battle other players. Players can enter select Walmart locations to access exclusive items.

Digital-Physical Hybrid Experiences

The visual augmentation produced by AR transforms physical spaces by leveraging the power of computer-generated graphics, an aesthetic punch-up proven to increase foot traffic. While some retailers are capitalizing on these hybrid experiences through cross-promotions, others are creating their own hybrid experiential marketing events.

Foot Locker developed an AR app that used geolocation to create a scavenger hunt in Los Angeles, leading customers to the location where they could purchase a pair of LeBron 16 King Court Purple shoes. Within two hours of launching the app, the shoes sold out.

AR also has proven potential to help stores create hybrid experiences through indoor navigation. Users can access an augmented view of the store through their phones, which makes in-store navigation easy. Users scan visual markers, recognized by Apple’s ARKitGoogle’s ARCore, and other AR SDKs, to establish their position, and AR indoor navigation applications can offer specific directions to their desired product.

Help Consumers Make Informed Choices

Ikea Place Screenshots

AR is commonly employed to enrich consumers’ understanding of potential purchases and prompt them to buy. For example, the “IKEA Place” app allows shoppers to see IKEA products in a superimposed graphics environment. IKEA boasts the app gives shoppers 98% accuracy in buying decisions.

Converse employs a similar application, the “Converse Sampler App”, which enables users to view what a shoe will look like on their feet through their device’s camera. The application increases customer confidence, helping them make the decision to purchase.

Treasury Wines Estates enhances the consumer experience with “Living Wine Labels”: AR labels that bring the history of the vineyard to life and provide users with supplementary information, including the history of the vineyard the wine came from and tasting notes.

Conclusion

AR enables striking visuals that captivate customers. As a burgeoning tool, AR enables companies to get creative and build innovative experiences that capture their customers’ imagination. Retailers who leverage AR will seize an advantage both in the short term and in the long term as the technology continues to grow and evolve.

The Future of Indoor GPS Part 5: Inside AR’s Potential to Dominate the Indoor Positioning Space

In the previous installment of our blog series on indoor positioning, we explored how RFID Tags are finding traction in the indoor positioning space. This week, we will examine the potential for AR Indoor Positioning to receive mass adoption.

When Pokemon Go accrued 550 million installs and made $470 million in revenues in 2016, AR became a household name technology. The release of ARKit and ARCore significantly enhanced the ability for mobile app developers to create popular AR apps. However, since Pokemon Go’s explosive release, no application has brought AR technology to the forefront of the public conversation.

When it comes to indoor positioning technology, AR has major growth potential. GPS is the most prevalent technology navigation space, but it cannot provide accurate positioning within buildings. GPS can be accurate in large buildings such as airports, but it fails to locate floor number and more specifics. Where GPS fails, AR-based indoor positioning systems can flourish.

HOW DOES IT WORK?

AR indoor navigation consists of three modules: Mapping, Positioning, and Rendering.

via Mobi Dev
via Mobi Dev

Mapping: creates a map of an indoor space to make a route.

Rendering: manages the design of the AR content as displayed to the user.

Positioning: is the most complex module. There’s no accurate way of using the technology available within the device to determine the precise location of users indoors, including the exact floor.

AR-based indoor positioning solves that problem by using Visual Markers, or AR Markers, to establish the users’ position. Visual markers are recognized by Apple’s ARKit, Google’s ARCore, and other AR SDKs.  When the user scans that marker, it can identify exactly where the user is and provide them with a navigation interface. The further the user is from the last visual marker, the less accurate their location information becomes. In order to maintain accuracy, developers recommend placing visual markers every 50 meters.

Whereas beacon-based indoor positioning technologies can become expensive quickly, running $10-20 per beacon with a working range of around 10-100 meters of accuracy, AR visual markers are the more precise and cost-effective solution with an accuracy threshold down to within millimeters.

Via View AR
Via View AR

CHALLENGES

Performance can decline when more markers have been into an AR-based VPS because all markers must be checked to find a match. If the application is set up for a small building where 10-20 markers are required, it is not an issue. If it’s a chain of supermarkets requiring thousands of visual markers across a city, it becomes more challenging.

Luckily, GPS can help determine the building where the user is located, limiting the number of visual markers the application will ping. Innovators in the AR-based indoor positioning space are using hybrid approaches like this to maximize precision and scale of AR positioning technologies.

CONCLUSION

AR-based indoor navigation has had few cases and requires further technical development before it can roll out on a large scale, but all technological evidence indicates that it will be one of the major indoor positioning technologies of the future.

This entry concludes our blog series on Indoor Positioning, we hope you enjoyed and learned from it! In case you missed it, check out our past entries:

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

The Future of Indoor GPS Part 2: Bluetooth 5.1′s Angle of Arrival Ups the Ante for BLE Beacons

The Future of Indoor GPS Part 3: The Broadening Appeal of Ultra Wideband

The Future of Indoor GPS Part 4: Read the Room with RFID Tags

A Smarter World Part 4: Securing the Smart City and the Technology Within

In the last installment of our blog series on smart cities, we examined how smart transportation will make for a more efficient society. This week, we’ll examine how urban security stands to evolve with the implementation of smart technology.

Smart security in the modern era is a controversial issue for informed citizens. Many science fiction stories have dramatized the evolution of technology, and how every advance increases the danger of reaching a totalitarian state—particularly when it comes to surveillance. However, as a society, it would be foolish to refrain from using the technical power afforded to us to protect our cities.

Here are the top applications for smart security in the smart cities of the future:

Surveillance

minority-report-iris-scan-blog-hero-778x391

Surveillance has been a political point of contention and paranoia since the Watergate scandal in the early 1970s. Whistleblower Edward Snowden became a martyr or traitor depending on your point of view when he exposed vast surveillance powers used by the NSA. As technology has rapidly evolved, the potential for governments to abuse their technological power has evolved with it.

Camera technology has evolved to the point where everyone has a tiny camera on them at all time via their phones. While monitoring entire cities with surveillance feeds is feasible, the amount of manpower necessary to monitor the footage and act in a timely manner rendered this mass surveillance ineffective. However, deep learning-driven AI video analytics tools can analyze real-time footage and identify anomalies, such as foreboding indicators of violence, and notify nearby law enforcement instantly.

In China, police forces use smart devices allied to a private broadband network to discover crimes. Huawei’s eLTE system allows officers to swap incident details securely and coordinate responses between central command and local patrols. In Shanghai, sophisticated security systems have seen crime rates drop by 30% and the amount of time for police to arrive at crime scenes drop to 3 minutes.

In Boston, to curb gun violence, the Boston police force has deployed an IoT sensor-based gunfire detection system that notifies officers to crime scenes within seconds.

Disaster Prevention

shutterstock_457990045-e1550674981237

One of the major applications of IoT-based security system involves disaster prevention and effective use of smart communication and alert systems.

When disasters strike, governments require a streamlined method of coordinating strategy, accessing data, and managing a skilled workforce to enact the response. IoT devices and smart alert systems work together to sense impending disasters and give advance warning to the public about evacuations and security lockdown alerts.

Cybersecurity

The more smart applications present in city infrastructure, the more a city becomes susceptible to cyber attack. Unsecured devices, gateways, and networks each represent a potential vulnerability for a data breach. The average cost of a data breach according to IBM and the Poneman Institute is estimated at $3.86 million dollars. Thus, one of the major components of securing the smart city is the ramping up of cybersecurity to prevent hacking.

smart-city-1 graphic

The Industrial Internet Consortium are helping establish frameworks across technologies to safely accelerate the Industrial Internet of Things (IIot) for transformational outcomes. GlobalSign works to move secure IoT deployments forward on a world-wide basis.

One of the first and most important steps toward cybersecurity is adopting standards and recommended guidelines to help address the smart city challenges of today. The Cybersecurity Framework is a voluntary framework consisting of standards, guidelines, and best practices to manage cybersecurity-related risk published by the National Institute of Standards and Technology (NIST), a non-regulatory agency in the US Department of Commerce. Gartner projects that 50% of U.S. businesses, critical infrastructure operators, and countries around the globe will use the framework as they develop and deploy smart city technology.

Conclusion

The Smart City will yield a technological revolution, begetting a bevy of potential applications in different fields, and with every application comes potential for hacker exploitation. Deployment of new technologies will require not only data standardization, but new security standardizations to ensure that these vulnerabilities are protected from cybersecurity threats. However, don’t expect cybersecurity to slow the evolution of the smart city too much as it’s expected to grow into a $135 billion dollar industry by 2021 according to TechRepublic.

This concludes our blog series on Smart Cities, we hope you enjoyed and learned from it! In case you missed it, check out our past entries for a full picture of the future of smart cities:

A Smarter World Part 1: How the Future of Smart Cities Will Change the World

A Smarter World Part 2: How Smart Infrastructure Will Reshape Your City

A Smarter World Part 3: How Smart Transportation Will Accelerate Your Business

A Smarter World Part 1: How the Future of Smart Cities Will Change the World

Are you ready for smart cities of the future?  Over the next few weeks, we will be endeavoring on a series of blogs exploring what the big players are developing for smart cities and how they will shape our world.

When the world becomes smart, life will begin to look a lot more like THE JETSONS!
When the world becomes smart, life will begin to look a lot more like THE JETSONS!

Our cities will become smart when they are like living organisms: actively gathering data from various sources and processing it to generate intelligence to drive responsive action. IoT, 5G, and AI will all work together to enable the cities of the future. IoT devices with embedded sensors will gather vast amounts of data, transmit it via high-speed 5G networks, and process it in the cloud through AI-driven algorithms designed to come up with preventative action. From smart traffic to smart flooding control, the problems smart cities can potentially solve are endless.

Imagine a world where bridges are monitored by hundreds of tiny sensors that send information about the amount of pressure on different pressure points. The data from those sensors instantly transmits via high-speed internet networks to the cloud where an AI-driven algorithm calculates potential breaking points and dispatches a solution in seconds.

That is where we are headed—and we’re headed there sooner than you think. Two-thirds of cities globally are investing in smart city technology and spending is projected to reach $135 billion by 2021. Here are the three of the top applications leading the charge in the Smart Cities space.

Smart Infrastructure

SMART INFRASTRUCTURE

As our opening description of smart bridges implies, smart infrastructure will soon become a part of our daily lives. In New Zealand, installed sensors monitor water quality and issue real-time warnings to help swimmers know where it’s safe to swim.

In order to enable smart functionality, sensors will need to be embedded throughout the city to gather vital information in different forms. In order to process the abundance of data, high-volume data storage and high-speed communications powered by high-bandwidth technologies like 5G will all need to become the norm before smart infrastructure can receive mass adoption.

Stay tuned for our next blog where we’ll get more in-depth on the future of smart infrastructure.

Smart Cars

SMART TRANSPORTATION

From smart parking meters to smart traffic lights, from autonomous cars to scooters and electric car sharing services, transportation is in the midst of a technological revolution and many advanced applications are just on the cusp of realization.

Smart parking meters will soon make finding a parking space in the city and paying for it easy.  In the UK, local councils can now release parking data in the same format, solving one of the major obstacles facing smart cities: Data Standardization (more on that later).

Autonomous cars, powered by AI, IoT, and 5G, will interact with the smart roads on which they are driving, reducing traffic and accidents dramatically.

While there is a debate about the long-term effectiveness of electric motorized scooters as a mode of transportation, they’ve become very popular in major US cities like San Francisco, Oakland, Los Angeles, Salt Lake City and are soon to come in Brooklyn.

With the New York Subway system in shambles, it seems inevitable the biggest city in the world will receive a state-of-the-art smart technology to drastically improve public transit.

Surveillance State

SMART SECURITY

The more you look at potential applications for smart security, the more it feels like you are looking at the dystopian future of the novel 1984.

Potential applications include AI-enabled crowd monitoring to prevent potential threats. Digital cameras like Go-Pros have shrunk the size of surveillance equipment to smaller than an apple. Drones are available at a consumer level as well. While security cameras can be placed plentifully throughout a city, one major issue is cultivating the manpower required to analyze all of the footage being gathered for potential threats. AI-driven algorithms to analyze footage for threats will enable municipalities to analyze threats and respond accordingly.

However, policy has not caught up with technology. The unique ethical quandaries brought up by smart security and surveillance will play out litigiously and dictate to what degree smart security will become a part of the cities of the future.

CONCLUSION

We can see what the future may look like, but how we’ll get there remains a mystery. Before smart technologies can receive mass adoption, legislation will need to be passed by both local and national governments. In addition, as the UK Parking Meter issue shows, data standardization will be another major obstacle for smart technology manufacturers. When governments on both a local and a national level an get on the same page with regard to how to execute smart city technology and legislation, the possibilities for Smart Cities will be endless.

Stay tuned next week for our deep dive into the future applications of Smart Infrastructure!

How the Revolutionary Mechanics of Blockchain Technology Could Serve Your Business

In the last entry in our cryptocurrency series, we explored how to secure your cryptocurrency with the right wallet. This week, we’ll take a look at the mechanics of the Blockchain across industries.

While the debate over whether Bitcoin will become the dominant cryptocurrency is far from over, the mechanics behind Bitcoin are unquestionably revolutionary. Blockchain technology has the potential to disrupt more than just currency, but industries ranging from healthcare to Wall Street.

The Blockchain is a secure ledger database shared by all parties participating in an established, distributed network of computers. The Blockchain decentralizes the process of validating transactions, allocating the duties to computers throughout the network.

Blockchain is revolutionary because it eliminates the need for a central authority, allowing for a real-time ledger that is not dependent on a single entity governing the transactions.

Imagine if in order to make changes to a text document, you had to email a colleague who would then update the document on Microsoft Word and send the updated file out to all relevant parties on the team. The updating of information would quickly become an inefficient process that is heavily dependent on the central entity (the colleague). Blockchain posits a workflow that is more like Google Docs in that it allows updates to be made in real time and shared across the network instantly without the need of a central authority. Blockchain enacts this principle by relying on computers within the network to independently validate transactions through cryptography. Thus, the validity of the ledger is determined by the many objective computers on the network rather than a single powerful entity.

The idea of decentralization can also be applied to WhatsApp, the popular messaging app that revolutionized texting and cut the cost of transactions globally. WhatsApp cut out the central authority of phone carrier companies by building the same functionality on a decentralized network (the Internet).

If you’re still confused about Blockchain, check out this awesome video by Wired breaking it down in 2 minutes:

https://www.youtube.com/watch?v=Q-UYHvPKt9E

Blockchain has already found usages in many different industries.

  • SMART CONTRACTS

Smart contracts are coded contracts embedded with the terms of an agreement. They are a method for businesses and individuals to exchange money, property, materials, or anything of value in a transparent way that avoids the services of a middleman (such as a lawyer). Smart contracts not only define the rules of an agreement, they automatically enforce the obligations provided in the terms of the contract.

Smart contracts have revolutionized the supply chain and threaten to eliminate the use of lawyers for enforcing contracts. Smart contracts and blockchain ensure data security that could also lead to the transferring of voting to an online system, potentially increasing voter turnout significantly.

  • HEALTHCARE

Within the healthcare industry, Blockchain has the potential to revolutionize data sharing between healthcare providers, resulting in more effective treatments and an overall improved ability for healthcare organizations to offer efficient care. A study from IBM showed that 56% of healthcare executives have a plan to implement a commercial blockchain solution by 2020.

  • SUPPLY CHAIN

Both within the Healthcare industry and elsewhere, blockchain is redefining supply chain management. Blockchain can provide a distributed ledger that tracks the transfer of goods and raw materials across wide-ranging geographical locations and stages. The public availability of the ledger makes it possible to trace the origin of the product down to the raw material used. For this reason, blockchain has also been applied to track organic produce supply chains.

The boon of the Internet of Things and smart objects means that blockchain technology can be extended to process data and manage smart contracts between individuals and their smart devices or even smart homes. Imagine a world where your refrigerator automatically orders eggs when it senses you are running low based on your egg eating habits. This world will be facilitated by a smart contract run on Blockchain technology embedded in an IoT device.

CONCLUSION

While the first blockchain was created for Bitcoin, applications for blockchain are constantly being implemented across industries. As Harvard Business Review smartly points out, the question in most industries is not whether blockchain will influence them, but when.

Many different cryptocurrencies are utilizing variations on Blockchain technology in order to process transactions—some of which are doing so in a more efficient manner than Bitcoin. Next week, we’ll explore the top cryptocurrencies on the market right now and which ones your business should accept.