Tag Archives: Augmented Reality

The Future of Professional Sports: Augmented Reality

Augmented Reality In Sports

The world of professional sports has always been at the forefront of utilizing cutting-edge technologies to enhance the experience of fans and improve team performance. One of the most exciting emerging technologies in this space is augmented reality (AR), which has the potential to revolutionize the way sports are played and viewed. Augmented reality involves overlaying digital information and images onto the real world, in real-time, through a device like a smartphone or AR headset. In this blog post, we will explore the technical side of AR in professional sports, including examples of teams that are already using AR to gain a competitive edge on the field.

Player Training and Performance Analysis

AR is already being used by professional sports teams to train and analyze player performance. For example, some basketball teams are using AR technology to track the shooting accuracy of their players during practice sessions. By overlaying digital targets and data onto a real basketball court, players can see how accurate their shots are and adjust their techniques accordingly. In football, AR is being used to simulate game scenarios and support off-field training for players. Coaches can use apps like NFL Game Theory to create plays and test them out in a digital environment. This allows players to become more familiar with different scenarios and improve their decision-making skills.

Enhancing Fan Engagement and Experience

In terms of fan engagement and experience, AR has opened up exciting new possibilities for professional sports teams. Manchester City FC, for instance, launched an AR app called “CityVR” in 2019 that allowed fans to explore their Etihad Stadium in 360 degrees, access exclusive content, and engage with the team in a fresh, immersive way. Similarly, the NBA’s Golden State Warriors used AR to improve fan engagement by bringing fans closer to the team’s pre-game rituals and player interactions through an official mobile app.

Several NFL teams, like the Tampa Bay Buccaneers and Baltimore Ravens, have also harnessed the power of AR to bring team mascots or famous players into fans’ surroundings through their mobile apps. Meanwhile, FC Barcelona enabled fans to interact with live AR stats, player statistics, and take a virtual tour of the iconic Camp Nou Stadium via their “Barça Live” AR app.

The Los Angeles Dodgers took the AR experience to the next level by providing AR glasses to fans during their games, overlaying real-time player statistics and information onto their view of the field. The San Francisco 49ers have also utilized AR in player training, developing a VR/AR-based program called “VRtize” to enhance game scenario understanding and decision-making among players.

The New York Yankees used AR to create interactive experiences for fans such as virtual tours of Yankee Stadium, while Formula 1 infused the fan experience with AR, enabling access to live data, track positions, and driver information during races via their F1 AR app. Various NHL and MLB teams have similarly leveraged AR to engage fans with initiatives like the Minnesota Wild’s AR app for photos with virtual players and the Boston Red Sox’s AR-based scavenger hunt within Fenway Park.

These diverse examples demonstrate how professional sports teams are leveraging augmented reality to connect with fans, enhance player performance, and create unique, interactive experiences both inside and outside the stadium. As AR technology continues to evolve, it is slated to play a significant role in shaping the future of sports entertainment.

Virtual Advertising

AR also provides a new way for teams to monetize their advertising real estate. Virtual advertising involves overlaying digital advertisements onto the real-world environment. This has the potential to revolutionize the way teams approach sponsorship deals, as they can now sell virtual ad space rather than relying solely on traditional advertising methods. For example, during an NFL game, virtual advertisements could be overlaid onto the field, visible to TV viewers but not to fans in the stadium.

AR-Enhanced Stadiums

Looking to the future, we can expect to see more stadiums and arenas incorporate AR technology directly into their architecture. For example, the forthcoming home stadium for the Golden State Warriors will include AR screens in its luxury suites, giving fans a more immersive experience during games. The Australian National Rugby League is also preparing to rollout AR technology in its stadiums, with the goal of enhancing the viewing experience for fans.

Challenges and Limitations

While AR has the potential to revolutionize professional sports, there are still challenges and limitations that must be overcome. One of the biggest issues is the cost and complexity of implementing AR technology. It requires significant investment in both hardware and software, as well as the expertise to develop and maintain AR applications. There are also concerns around data privacy and security, as AR applications often collect sensitive personal information.

In conclusion, augmented reality has the potential to significantly impact the world of professional sports, providing players with new training and analysis tools, fans with a more immersive viewing experience, and teams with new sources of revenue. However, there are still challenges and limitations that need to be overcome before AR becomes mainstream in this space. The good news is that we are already seeing some examples of teams successfully implementing AR, and as the technology becomes more advanced and accessible, we can expect to see even more exciting applications emerging. As always, staying ahead of the curve and embracing new technologies will be critical for maintaining a competitive edge in professional sports.

How Augmented Reality is Revolutionizing Engineering

Technology has always played an important role in the field of engineering, and the advancements in augmented reality (AR) is no exception. AR enables engineers to visualize and analyze complex designs or models with incredible detail and precision, facilitating their work, and resulting in significant improvements in efficiency, accuracy, and productivity. In this blog post, we will explore how AR is revolutionizing the field of engineering and how it is improving the work of engineering professionals.

SIMPLIFYING COMPLEX MODELS

AR helps engineers simplify complex models by superimposing a digital overlay onto the physical world. By doing this, engineers can analyze models in their actual size and scale, making it easier to understand and manipulate for design modifications. AR can aid engineers to identify design flaws much more rapidly with fewer errors.

ENHANCING COLLABORATION

With AR, engineering teams can collaborate more effectively, regardless of their location, utilizing a shared AR model. Multiple team members can view and interact with the same model, which provides better insights and leads to better resolutions.

IMPROVING PRECISION

AR enables engineers to identify and mitigate potential errors before production or assembly. AR headsets can overlay digital design elements in real-time to pinpoint precise positions of mechanical components. As a result, engineering firms can reduce their manufacturing time while increasing the quality of their output.

BOOSTING EFFICIENCY

AR helps reduce the time needed for design reviews by allowing engineers to identify optimization opportunities more rapidly. Furthermore, AR can simplify assembly procedures by providing detailed step-by-step guidance through the assembly process, leading to quicker and more accurate builds.

COST REDUCTION

Increased efficiency, improved collaboration, and reduced errors lead to significant cost savings. Applying AR technology to the engineering process is providing substantial cost savings across the industry.

REAL-WORLD EXAMPLES OF AR IN ENGINEERING

AR is not a futuristic concept; it is already being utilized by several leading engineering companies worldwide:

  • Boeing: Boeing employs AR glasses for its technicians to aid in assembling complex aircraft. The glasses display instructions and diagrams directly in the technician’s field of view, boosting accuracy and efficiency.
  • Volkswagen: Volkswagen has implemented AR technology to assist its assembly line workers. AR headsets provide step-by-step instructions and can highlight specific components and tools needed during the assembly process.
  • Siemens: Siemens provides an AR-based maintenance solution for its industrial customers through their “Siemens Industrial Augmented Reality” platform. This technology assists field service technicians in diagnosing and repairing machinery by offering real-time data and guidance.
  • Lockheed Martin: Lockheed Martin, a global aerospace and defense company, uses AR to improve the assembly of satellite components. Technicians wearing AR glasses can access digital assembly instructions, reducing errors and accelerating the assembly process.
  • Porsche: Porsche employs AR glasses to assist service technicians at their dealerships. These glasses furnish service manuals, schematics, and technical information, allowing technicians to work hands-free.
  • Jaguar Land Rover: Jaguar Land Rover utilizes AR in the design and prototyping of vehicles. Engineers can view and manipulate 3D models in a real-world context, easing the evaluation of designs and collaboration on alterations.
  • General Electric (GE): GE utilizes AR for equipment maintenance and repair. Technicians can use AR apps on tablets or smart glasses to access digital twins of industrial machines, aiding in diagnostics and maintenance procedures.
  • Caterpillar: Caterpillar employs AR technology for training technicians and service personnel. It offers an interactive training module via the “Cat® AR” app for the maintenance and repair of heavy machinery.
  • BMW: BMW leverages AR glasses in its production process. These glasses assist workers in assembling and verifying the correct installation of complex components, such as wiring harnesses, by displaying visual instructions and highlighting potential issues.
  • Procter & Gamble: This multinational consumer goods corporation uses AR for quality control in its manufacturing processes. It deploys AR systems capable of scanning products for defects, providing real-time feedback to workers.
  • ABB: ABB, a global leader in robotics and automation technology, integrates AR into its service and support offerings. AR glasses enable remote experts to aid on-site technicians during maintenance and troubleshooting tasks.
  • DHL Supply Chain: DHL has implemented AR smart glasses in its warehouses to improve order picking and inventory management. Warehouse workers receive real-time picking instructions and can scan barcodes with the glasses for accuracy.

As highlighted above, AR is being applied in various ways across the manufacturing industry to enhance productivity, reduce errors, improve training, and streamline operations. AR continues to play a crucial role in transforming manufacturing processes and boosting overall efficiency.

TOP AR TOOLS THAT ARE MAKING WAVES IN THE ENGINEERING WORLD:

The choice of software depends on the specific needs and goals of the engineering project. Here are a few examples:

  1. AutoCAD AR: AutoCAD, a renowned software for 2D and 3D design, now boasts AR functionality. This allows engineers to visualize their CAD designs in real-world settings, thereby simplifying assessments of how a design will fit into a physical space.
  2. Trimble Connect: This collaboration platform offers AR capabilities, enabling engineers and construction professionals to overlay 3D models onto real-world job sites, which enhances project planning and management.
  3. Microsoft HoloLens and Microsoft Mixed Reality: Microsoft’s HoloLens and Mixed Reality platforms provide AR tools for engineers. They allow for viewing and interacting with 3D models, schematics, and data in a mixed reality environment.
  4. PTC Vuforia: PTC’s Vuforia platform offers AR solutions for industrial applications. It allows engineers to create interactive and immersive AR experiences for tasks like maintenance and training.
  5. Magic Leap: This company provides spatial computing technology for various applications, including engineering. Engineers can use Magic Leap’s AR headset to interact with 3D models and data in a spatial context.
  6. EON Reality: EON Reality provides AR and VR solutions for engineering training and education, allowing for the creation of immersive training simulations for various industrial processes.
  7. SolidWorks XR: SolidWorks, a popular 3D CAD software, offers an extended reality (XR) feature that enables engineers to view and interact with their 3D designs in augmented and virtual reality environments.
  8. Scope AR WorkLink: This platform provides AR solutions for industrial maintenance and repair. It allows engineers to access step-by-step AR instructions while performing complex maintenance tasks.
  9. TeamViewer Frontline: This platform, designed for frontline workers, including engineers, offers various AR applications for tasks such as assembly, quality control, and remote assistance. It also allows them to access hands-free information and guidance through smart glasses.
  10. Fologram: Tailored for architecture, construction, and engineering, Fologram allows engineers to view complex 3D models on job sites and collaborate with colleagues in real time.

These AR software solutions are transforming the way engineers work by enhancing collaboration, improving training and maintenance processes, and providing new ways to visualize and interact with complex data and designs.

TAKEAWAYS

It’s clear that augmented reality has emerged as a powerful tool for the engineering industry. It can simplify tasks, enhance collaboration, improve accuracy, save time and money, and positively impact product quality. By using AR, engineering firms can now optimize their delivery times while simultaneously improving product performance and quality. Engineering professionals that leverage this technology can expect to see significant benefits in their work, ultimately resulting in increased productivity and innovation. It’s no surprise that the engineering industry is now adopting this incredible technology at an ever rapid rate. Augmented reality is more than a trend; it’s a game-changing technology that is here to stay.

In our next blog, we will explore how augmented reality is beneficial to robotics development.

Learn More About Triggering Augmented Reality Experiences with AR Markers

We expect a continued increase in the utilization of AR in 2021. The iPhone 12 contains LiDAR technology, which enables the use of ARKit 4, greatly enhancing the possibilities for developers. When creating an AR application, developers must consider a variety of methods for triggering the experience and answer several questions before determining what approach will best facilitate the creation of a digital world for their users. For example, what content will be displayed? Where will this content be placed, and in what context will the user see it?

Markerless AR can best be used when the user needs to control the placement of the AR object. For example, the IKEA Place app allows the user to place furniture in their home to see how it fits.

1_0RtFp6lxeJWxcg5EE_wYCg

Location-based AR roots an AR experience to a physical space in the world, as we explored previously in our blog Learn How Apple Tightened Their Hold on the AR Market with the Release of ARKit 4. ARKit 4 introduces Location Anchors, which enable developers to set virtual content in specific geographic coordinates (latitude, longitude, and altitude). To provide more accuracy than location alone, location anchors also use the device’s camera to capture landmarks and match them with a localization map downloaded from Apple Maps. Location anchors greatly enhance the potential for location-based AR; however, the possibilities are limited within the 50 cities which Apple has enabled them.

Marker-based AR remains the most popular method among app developers. When an application needs to know precisely what the user is looking at, accept no substitute. In marker-based AR, 3D AR models are generated using a specific marker, which triggers the display of virtual information. There are a variety of AR markers that can trigger this information, each with its own pros and cons. Below, please find our rundown of the most popular types of AR markers.

FRAMEMARKERS

5fc9da7d2761437fecd89875_1_gXPr_vwBWmgTN5Ial7Uwhg

The most popular AR marker is a framemarker, or border marker. It’s usually a 2D image printed on a piece of paper with a prominent border. During the tracking phase, the device will search for the exterior border in order to determine the real marker within.

Framemarkers are similar to QR Codes in that they are codes printed on images that require handheld devices to scan, however, they trigger AR experiences, whereas QR codes redirect the user to a web page. Framemarkers are a straightforward and effective solution.

absolut-truths

Framemarkers are particularly popular in advertising applications. Absolut Vodka’s Absolute Truth application enabled users to scan a framemarker on a label of their bottle to generate a slew of more information, including recipes and ads.

GameDevDad on Youtube offers a full tutorial of how to create framemarkers from scratch using Vuforia Augmented Reality SDK below.

 

NFT MARKERS

?????????

NFT, or Natural Feature Tracking, enable camera’s to trigger an AR experience without borders. The camera will take an image, such as the one above, and distill down it’s visual properties as below.

AugementedRealityMarkerAnymotionFeatures

The result of processing the features can generate AR, as below.

ImEinsatz

The quality and stability of these can oscillate based on the framework employed. For this reason, they are less frequently used than border markers, but function as a more visually subtle alternative. A scavenger hunt or a game employing AR might hide key information in NFT markers.

Treasury Wine Estates Living Wine Labels app, displayed above, tracks the natural features of the labels of wine bottles to create an AR experience which tells the story of their products.

OBJECT MARKERS

image1-7

The  toy car above has been converted into an object data field using Vuforia Object Scanner.

image4-1

Advancements in technology have enabled mobile devices to solve the issue of SLAM (simultaneous localization and mapping). The device camera can extract information in-real time, and use it to place a virtual object in it. In some frameworks, objects can become 3D-markers. Vuforia Object Scanner is one such framework, creating object data files that can be used in applications for targets. Virtual Reality Pop offers a great rundown on the best object recognition frameworks for AR.

RFID TAGS

Although RFID Tags are primarily used for short distance wireless communication and contact free payment, they can be used to trigger local-based virtual information.

While RFID Tags are not  widely employed, several researchers have written articles about the potential usages for RFID and AR. Researchers at the ARATLab at the National University of Singapore have combined augmented reality and RFID for the assembly of objects with embedded RFID tags, showing people how to properly assemble the parts, as demonstrated in the video below.

SPEECH MARKERS

Speech can also be used as a non-visual AR marker. The most common application for this would be for AR glasses or a smart windshield that displays information through the screen requested by the user via vocal commands.

CONCLUSION

Think like a user—it’s a staple coda for app developers and no less relevant in crafting AR experiences. Each AR trigger offers unique pros and cons. We hope this has helped you decide what is best equipped for your application.

In our next article, we will explore the innovation at the heart of AIoT, the intersection of AI and the Internet of Things.

The Best New Features of iOS 11

While we thoroughly enjoyed iOS 10’s open functionality and all it offered app developers, Apple’s premiere operating system is due for a refresh. iOS 11 has been making waves in its public beta release, here are the top upgrades coming to Apple’s landmark OS:

MAJOR UPGRADES FOR IPAD

Apple’s iOS 11 preview states right off the bat: “A giant step for iPhone. A monumental leap for iPad.” iOS 11 offers a number of improvements for iPad users.

The improved Dock now looks a lot like the macOS dock. Users can put dozens of apps in the doc and easily pull it up by swiping upward.

Need to use two apps at the same time? iOS has your back. Like Picture-In-Picture Mode for Android, which we detailed last week in our coverage of Android Oreo, iOS 11 allows you to use two apps at the same time—something that will inevitably come in handy on the large screens of the iPad.

Apple Pencil Instant Notes via Redmond Pie

APPLE PENCIL receives a major upgrade in iOS 11. Instant Markup makes it easy to mark up PDFs, screenshots and more. Instant Notes and Inline Drawing let you customize your screen. The Scan and Sign feature also makes it easy to sign important documents online and send them in the flash of an eye.

SIRI MATURES

WIRED recently detailed the path toward improving the voice of iOS: Siri. While Google and Amazon have excelled in their virtual assistant development, Siri seems to have lagged behind. iOS 11 revamps Siri’s voice to sound much more natural, while also teaching her to translate Chinese, Spanish, French, German, or Italian.

GET READY FOR AUGMENTED REALITY!

When Pokemon Go took the world by storm, “Augmented Reality” became a household name. Now, the time has come for app developers rejoice! iOS 11 features ARKit, a new development framework that makes it easy for developers to build incredible AR experiences.

ARKit allows developers to create 2D or 3D elements in the live view from iPhone and iPad camera’s in order to make them appear as if they exist in the real world. ARKit combines device motion tracking, camera scene capture, advanced scene processing, and display conveniences to make building AR experiences a breeze.

Check out some of the best AR experiences built with ARKit so far.

CAMERA TIME

Thanks to a new compression technology, iOS 11 will be able to store video using less space than ever. Additionally, the camera will allow users to loop live videos, to trim and edit live videos, to grab a still from a live photo, and to capture time and movement with long exposure photos.

Apple App Store via BGR

APP STORE REDESIGN

The rigorous standards of Apple’s App Store always lent itself to curation. With that in mind, Apple has redesigned the App Store to emphasize discovery. The new App Store will offer a completely separate tab for Games, a variety of daily stories and a tab for the best apps of the day, all curated by Apple!

FILES, PAYMENT, AND MORE

iOS 11 is a comprehensive upgrade that comes equipped with a host of other great additions, including:

FILES: Never lose track of important documents again! The Files app makes it easy to find files stored on iOS devices, in iCloud Drive, and even across other cloud services like Box and Dropbox.

APPLE PAY IN IMESSAGE: iOS 11 will make peer-to-peer payments easy, allowing users to send Apple Pay payments as a part of iMessage.

CONTROL CENTER: The Control Center has received a complete redesign. The new Control Center will appear all on one page and is customizable, allowing users to personalize the design to the most helpful layout.

TAKEAWAYS

If you are an iPad user, you are truly in for a treat when iOS 11 comes out. If you only use iPhone, iOS 11 still delivers a fresh redesign with improved functionality. iOS 11 is yet another solid entry in Apple’s OS canon.