Tag Archives: Rate

How Bluetooth Became the Gold Standard of Wireless Audio Technology

Bluetooth technology has established itself over the years as the premiere wireless audio technology and a staple of every smartphone user’s daily mobile experience. From wireless headphones, to speakers, to keyboards, gaming controllers, IoT devices, and instant hotspots—Bluetooth is used for a growing variety of functions every year.

While Bluetooth is now a household name, the path to popularity was built over the course of over 20 years.

CONCEPTION

In 1994, Dr. Jaap Haartsen—an electrical engineer working for Ericsson’s Mobile Terminal Division in Lund—was tasked with creating an indoor wireless communication system for short-range radio connections. He ultimately created the Bluetooth protocol. Named after the renowned Viking king who united Denmark and Norway in 958 AD, the Bluetooth protocol was designed to replace RS-232 telecommunication cables using short range UHF radio waves between 2.4 and 2.485 GHz.

In 1998, he helped create the Bluetooth Special Interest Group, driving the standardization of the Bluetooth radio interface and obtaining worldwide regulatory approval for Bluetooth technology. To this day, Bluetooth SIG publishes and promotes the Bluetooth standard as well as revisions.

BLUETOOTH REACHES CONSUMERS

In 1999, Ericsson introduced the first major Bluetooth product for consumers in the form of a hands-free mobile headset. The headset won the “Best of Show Technology” award at COMDEX and was equipped with Bluetooth 1.0.

Each iteration of Bluetooth has three main distinguishing factors:

  • Range
  • Data speed
  • Power consumption

The strength of these factors is determined by both the modulation scheme and data packet employed. As you might imagine, Bluetooth 1.0 was far slower than the Bluetooth we’ve become accustomed to in 2021. Data speeds capped at 1Mbps with a range up to 10 meters. While we use Bluetooth to listen to audio on a regular basis today, it was hardly equipped to handle music and primarily designed for wireless voice calls.

THE BLUETOOTH EVOLUTION

The Bluetooth we currently enjoy in 2021 is version 5. Over the years, Bluetooth’s range, data speed, and power consumption have increased dramatically.

In 2004, Bluetooth 2.0 focused on enhancing the data rate, pushing from 0.7Mbps in version 1 to 1-3Mbps while increasing range from 10m to 30m. Bluetooth 3.0 increased speeds in 2009, allowing up to 24Mbps.

In 2011, Bluetooth 4.0 introduced a major innovation in BLE (Bluetooth Low Energy). BLE is an alternate Bluetooth segment designed for very low power operation. It enables major flexibility to build products that meet the unique connectivity requirements of their market. BLE is tailored toward burst-like communications, remaining in sleep mode before and after the connection initiates. The decreased power consumption takes IoT devices like industrial monitoring sensors, blood pressure monitoring, and Fitbit devices to the next level. These devices can employ BLE to run at 1Mbps at very low power consumption rates. In addition to lowering the power consumption, Bluetooth 4.0 doubles the typical maximum range from 30m in Bluetooth 3.0 to 60m.

BLUETOOTH 5

Bluetooth 5 is the latest version of the technology. Bluetooth 5 doubles the bandwidth by doubling the speed of transmission. In addition, it quadruples the typical max range, bringing it up to 240m. Bluetooth 5 also introduces Bluetooth Low Energy audio, which enables one device to share audio with multiple other devices.

CONCLUSION

Bluetooth is a game-changing technology which stands to revolutionize more than just audio. IoT devices, health tech, and more stand to improve as the Bluetooth SIG continues to upgrade the protocol. After thirty years of improvement, the possibilities remain vast for savvy developers to take advantage of the latest Bluetooth protocols to build futuristic wireless technologies.

How Wearables Help Fight Covid-19

The Covid-19 pandemic forced lifestyle changes to the global population unlike any other event in recent history. As companies like Amazon and Zoom reap major profits from increased demand for online ordering and teleconferencing, wearable app developers are taking a particular interest in how they can do their part to help quell the pandemic.

It’s easy to take a wearable device that tracks key health metrics and market it as helping to detect Covid-19. It’s much harder to create a device with a proven value in helping prevent the spread of the disease. Here’s our rundown of what you need to know about how wearables can help fight the Covid-19 pandemic.

WEARABLES CANNOT DIAGNOSE COVID-19

ows_8eb4b8c9-7adf-45d7-97eb-f04ff7adedd4

In an ideal world, your smartwatch could analyze your body on a molecular level to detect whether you have Covid-19. Technology has not evolved, yet, to where this is possible. The only way to diagnose Covid-19 is through a test administered by a health-care professional.

Fortunately, there are several ways in which wearables can help fight the spread of Covid-19 that do not involve direct diagnosis.

WEARABLES CAN DETECT EARLY SYMPTOMS

Wearables make it easy for their users to monitor general health conditions and deviations from their norms. Although wearables cannot detect the difference between the flu and Covid-19, they can collect data which indicates early symptoms of an illness and warns their users.

Fitbit CEO James Park hopes the device will eventually sense these changes in health data and instruct users to quarantine 1-3 days before symptoms start and to follow-up for confirmation with a coronavirus test.

Oura Ring
Oura Ring

Another big player in the Covid-19 wearables space is the Oura ring. The Oura ring is a smart ring that tracks activity, sleep, temperature, pulse, and heart rate. Since the outbreak, it has emerged as a major tool for detecting early symptoms like increased resting heart rate. Most notably, NBA players in Orlando, Florida use the device to monitor their health and detect early symptoms.

WEARABLES HELP KEEP FRONTLINE HEALTH WORKERS SAFE

John A. Rogers, a biomedical engineer at Northwestern University, has been developing a wearable patch that attaches to the user’s throat and helps monitor coughing and respiratory symptoms like shortness of breath.

Wearable patch developed by John A. Rogers of Northwestern University
Wearable patch developed by John A. Rogers of Northwestern University

One of the planned uses of this wearable is to protect frontline health-care workers by detecting if they contract the virus and become sick.

In addition, wearables can help monitor symptoms in hospitalized patients. This will reduce the chance of spreading the infection and exposing infected patients to workers.

ASYMPTOMATIC CARRIERS ARE ANOTHER STORY

Although wearables can collect and identify health data that points toward potential infections, recognizing asymptomatic carriers of the Coronavirus is another story. When carriers show no symptoms, the only way to determine if they have been infected is through a test.

TAKEAWAY

Unless there are significant technological leaps in Covid-19 testing, wearables will not be able to detect infections directly. However, they can help catch symptoms early to prevent the spread. Their ability to assist the pandemic represents a major growth sector. We look forward to seeing how wearable developers will innovate to protect the health of users and our future.