Tag Archives: Tag

HOW DICOM BECAME THE STANDARD IN MEDICAL IMAGING TECHNOLOGY

Building applications for medical technology projects often requires extra attention from software developers. From adhering to security and privacy standards to learning new technologies and working with specialized file formats—developers coming in fresh must do a fair amount of due diligence to get acclimated in the space. Passing sensitive information between systems requires adherence to extra security measures—standards like HIPAA (Health Insurance Portability and Accountability Act) are designed to protect the security of health information.

When dealing with medical images and data, one international standard rises above the rest: DICOM. There are hundreds of thousands of medical imaging devices in use—and DICOM has emerged as the most widely used healthcare messaging standards and file formats in the world. Billions of DICOM images are currently employed for clinical care.

What is DICOM?

DICOM stands for Digital Imaging and Communications in Medicine. It’s the international file format and communications standard for medical images and related information, implemented in nearly every radiology, cardiology, imaging, and radiotherapy devices such as X-rays, CT scans, MRI, ultrasound, and more. It’s also finding increasing adoption in fields such as ophthalmology and dentistry.

DICOM groups information into data sets. Similar to how JPEGs often include embedded tags to identify or describe the image, DICOM files include patient ID to ensure that the image retains the necessary identification and is never separated from it. The bulk of images are single frames, but the attribute can also contain multiple frames, allowing for storage of Cineloops.

The History of DICOM

DICOM was developed by the American College of Radiology (ACR) and the National Electrical Manufacturer’s Association (NEMA) in the 1980s. Technologies such as CT scans and other advanced imaging technologies made it evident that computing would play an increasingly major role in the future of clinical work. The ACR and NEMA sought a standard method for transferring images and associated information between devices from different vendors.

The first standard covering point-to-point image communication was created in 1985 and initially titled ACR-NEMA 300. A second version was subsequently released in 1988, finding increased adoption among vendors. The first large-scale deployment of ACR-NEMA 300 was in 1992 by the U.S. Army and Air Force. In 1993, the third iteration of the standard was released—and it was officially named DICOM. While the latest version of DICOM is still 3.0, it has received constant maintenance and updates since 1993.

Why Is DICOM Important?

DICOM enables the interoperability of systems used to manage workflows as well as produce, store, share, display, query, process, retrieve and print medical images. By conforming to a common standard, DICOM enables medical professionals to share data between thousands of different medical imaging devices across the world. Physicians use DICOM to access images and reports to diagnose and interpret information from any number of devices.

DICOM creates a universal format for physicians to access medical imaging files, enabling high-performance review whenever images are viewed. In addition, it ensures that patient and image-specific information is properly stored by employing an internal tag system.

DICOM has few disadvantages. Some pathologists perceive the header tags to be a major flaw. Some tags are optional, while others are mandatory. The additional tags can lead to inconsistency or incorrect data. It also makes DICOM files 5% larger than their .tiff counterparts.

The Future

The future of DICOM remains bright. While no file format or communications standard is perfect, DICOM offers unparalleled cross-vendor interoperability. Any application developer working in the medical technology field would be wise to take the time to comprehensively understand it in order to optimize their projects.

The Future of Indoor GPS Part 4: Read the Room with RFID Tags

In the previous installment of our blog series on indoor positioning, we explored the future of Ultra Wideband technology. This week, we will examine RFID Tags.

The earliest applications of RFID tags date back to World War II when they were used to identify nearby planes as friends or foes. Since then, RFID technology has evolved to become one of the most cost-effective and easy to maintenance indoor positioning technologies on the market.

WHAT IS RFID?

rfid_works

RFID refers to a wireless system with two components: tags and readers. The reader is a device with one or more antennae emitting radio waves and receiving signals back from the RFID tag.

RFID tags are attached to assets like product inventory. RFID Readers enable users to automatically track and identify inventory and assets without a direct line of sight with a read range between a few centimeters and over 20 meters. They can contain a wide range of information, from merely a serial number to several pages of data. Readers can be mobile and carried by hand, mounted or embedded into the architecture of a room.

RFID tags use radio waves to communicate with nearby readers and can be passive or active. Passive tags are powered by the reader, do not require a battery,  and have a read range of Near Contact – 25 Meters. Active tags require batteries and have an increased read range of 30 – 100+ Meters.

WHAT DOES RFID DO?

RFID is one of the most cost-effective and efficient location technologies. RFID chips are incredibly small—they can be placed underneath the skin without much discomfort to the host. For this reason, RFID tags are commonly used for pet identification.

Image via Hopeland
Image via Hopeland

One of the most widespread uses of RFID is in inventory management. When a unique tag is placed on each product, RFID tags offer instant updates on the total number of items within a warehouse or shop. In addition, it can offer a full database of information updated in real time.

RFID has also found several use cases in indoor positioning. For example, it can identify patients and medical equipment in hospitals using several readers spaced out in the building. The readers each identify their relative position to the tag to determine its location within the building. Supermarkets similarly use RFID to track products, shopping carts, and more.

RFID has found a wide variety of use cases, including:

WHAT ARE THE CONS OF USING RFID?

Perhaps the biggest obstacle facing businesses looking to adopt RFID for inventory tracking is pricing. RFID tags are significantly more expensive than bar codes, which can store some of the same data and offer similar functionality. At about $0.09, passive RFID tags are less expensive than active RFID tags, which can run from $25-$50. The cost of active RFID tags causes many businesses to only use them for high-inventory items.

RFID tags are also vulnerable to viruses, as is any technology that creates a broadcast signal. Encrypted data can help provide an extra level of security; however, security concerns still often prevents larger enterprises from utilizing them on the most high-end merchandise.

OVERALL

RFID tags are one of the elite technologies for offering inventory management with indoor positioning. Although UWB and Bluetooth BLE beacons offer more precise and battery-efficient location services, RFID is evolving to become more energy and cost efficient.

Stay tuned for the next entry in our Indoor Positioning blog series which will explore AR applications in indoor positioning!